Zeta potential for metal oxide nanoparticles: a predictive model developed by a nano-quantitative structure-property relationship approach

Alicja Mikołajczyk , Agnieszka Gajewicz , Bakhtiyor Rasulev , Nicole Schaeublin , Elizabeth Maurer-Gardner , Saber Hussain , Jerzy Leszczynski , Tomasz Puzyn

Abstract

Physico–chemical characterization of nanoparticles in the context of their transport and fate in the environment is an important challenge for risk assessment of nanomaterials. One of the main characteristics that defines the behavior of nanoparticles in solution is zeta potential (ζ). In this paper, we have demonstrated the relationship between zeta potential and a series of intrinsic physico–chemical features of 15 metal oxide nanoparticles revealed by computational study. The here-developed quantitative structure–property relationship model (nano-QSPR) was able to predict the ζ of metal oxide nanoparticles utilizing only two descriptors: (i) the spherical size of nanoparticles, a parameter from numerical analysis of transmission electron microscopy (TEM) images, and (ii) the energy of the highest occupied molecular orbital per metal atom, a theoretical descriptor calculated by quantum mechanics at semiempirical level of theory (PM6 method). The obtained consensus model is characterized by reasonably good predictivity (QEXT2 = 0.87). Therefore, the developed model can be utilized for in silico evaluation of properties of novel engineered nanoparticles. This study is a first step in developing a comprehensive and computationally based system to predict physico–chemical properties that are responsible for aggregation phenomena in metal oxide nanoparticles.
Author Alicja Mikołajczyk (FCh / DEChR / LECh)
Alicja Mikołajczyk,,
- Laboratory of Environmental Chemometrics
, Agnieszka Gajewicz (FCh / DEChR / LECh)
Agnieszka Gajewicz,,
- Laboratory of Environmental Chemometrics
, Bakhtiyor Rasulev
Bakhtiyor Rasulev,,
-
, Nicole Schaeublin
Nicole Schaeublin,,
-
, Elizabeth Maurer-Gardner
Elizabeth Maurer-Gardner,,
-
, Saber Hussain
Saber Hussain,,
-
, Jerzy Leszczynski
Jerzy Leszczynski,,
-
, Tomasz Puzyn (FCh / DEChR / LECh)
Tomasz Puzyn,,
- Laboratory of Environmental Chemometrics
Journal seriesChemistry of Materials, ISSN 0897-4756, (A 45 pkt)
Issue year2015
Vol27
No7
Pages2400-2407
Publication size in sheets0.5
DOIDOI:10.1021/cm504406a
URL http://pubs.acs.org/doi/pdf/10.1021/cm504406a
Languageen angielski
Score (nominal)45
ScoreMinisterial score = 45.0, 20-12-2017, ArticleFromJournal
Ministerial score (2013-2016) = 45.0, 20-12-2017, ArticleFromJournal
Publication indicators WoS Impact Factor: 2015 = 9.407 (2) - 2015=9.363 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back