Toward fast calculation of communication paths for resilient routing

Kanstantsin Myslitski , Jacek Rak , Łukasz Kuszner


Utilization of alternate communication paths is a common technique to provide protection of transmission against failures of network nodes/links. However, a noticeable delay is encountered when calculating the relevant sets of disjoint paths using the available algorithms (e.g., using Bhandari's approach). This, in turn, may have a serious impact on the ability of a network to serve dynamic demands (i.e., characterized by a relatively short duration time). To provide a solution to this problem, in this article we introduce an approach to pre-compute the sets of disjoint paths in advance to be able to start serving the demands shortly after their arrival. Our approach is based on the observation that the issue of establishing a set of node-disjoint paths is equivalent to the problem of determining the cheapest cycle in the network topology traversing the end nodes of a demand. In particular, we propose a generalization of this scheme assuming that any pair of node-disjoint paths can be obtained by means of merging a number of basic cycles defined for a network topology. A new method to calculate the cheapest end-to-end cycles based on the so called basic cycles is introduced, which, as verified for real network topologies, reduces up to 70% the time needed to establish node-disjoint paths (compared with the results obtained for the reference Bhandari's scheme).
Author Kanstantsin Myslitski
Kanstantsin Myslitski,,
, Jacek Rak
Jacek Rak,,
, Łukasz Kuszner (FMPI/II)
Łukasz Kuszner ,,
- Institute of Informatics
Journal seriesNetworks, ISSN 0028-3045, [1097-0037 (online)], (A 25 pkt)
Issue year2017
Publication size in sheets0.90
Keywords in Englishnetwork resilience, end-to-end communications resilience, survivable routing, fast computation of communication paths, failures of network nodes/links, optimization
ASJC Classification1705 Computer Networks and Communications; 1708 Hardware and Architecture; 1710 Information Systems; 1712 Software
Languageen angielski
Score (nominal)25
Score sourcejournalList
ScoreMinisterial score = 25.0, 28-01-2020, ArticleFromJournal
Publication indicators WoS Citations = 0.000; Scopus SNIP (Source Normalised Impact per Paper): 2017 = 1.380; WoS Impact Factor: 2017 = 1.121 (2) - 2017=1.359 (5)
Citation count*6 (2020-07-31)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?