Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6

Patrycja Parnicka , Alicja Mikołajczyk , Henry P. Pinto , Wojciech Lisowski , Tomasz Klimczuk , Grzegorz Trykowski , Beata Bajorowicz , Adriana Zaleska-Medynska

Abstract

Bismuth tungstate (Bi2WO6) can work as a photocatalyst but suffers from rapid recombination of photogenerated charge carriers. Herein, density functional theory (DFT) simulations revealed that the formation of a thermodynamically stable AgInS2(112)/Bi2WO6(010) heterojunction could promote charge separation and enhance the photoactivity of Bi2WO6. To confirm these theoretical predictions, a new type of photocatalysts in the form of Bi2WO6 flower-like microspheres decorated with different amounts of AgInS2 quantum dots (QDs) was obtained using a three-step procedure. The optimized system, obtained by embedding 1 wt% AgInS2 QDs on a Bi2WO6 matrix, possessed an enhanced photocatalytic activity for both phenol degradation and water splitting under visible light irradiation (λ > 420 nm), as well as good reusability and stability during prolonged storage. Finally, DFT calculations of the adsorption energies of reagents (O2, H2O, and H2 molecules) on Bi2WO6 and AgInS2/Bi2WO6 surfaces showed that the surface of the AgInS2(112)/Bi2WO6(010) interface was more active, allowing this system to strongly interact with surrounding species such as H2, O2, and H2O and thereby inducing photocatalytic oxidation of OH– to •OH, reduction of O2 to O2•– or reduction of H+ to H2.
Author Patrycja Parnicka (FCh / DET / LPh)
Patrycja Parnicka,,
- Laboratory of Photocatalysis
, Alicja Mikołajczyk (FCh / DEChR / LECh)
Alicja Mikołajczyk,,
- Laboratory of Environmental Chemometrics
, Henry P. Pinto
Henry P. Pinto,,
-
, Wojciech Lisowski
Wojciech Lisowski,,
-
, Tomasz Klimczuk
Tomasz Klimczuk,,
-
, Grzegorz Trykowski
Grzegorz Trykowski,,
-
, Beata Bajorowicz (FCh / DET / LPh)
Beata Bajorowicz,,
- Laboratory of Photocatalysis
, Adriana Zaleska-Medynska (FCh / DET / LPh)
Adriana Zaleska-Medynska,,
- Laboratory of Photocatalysis
Journal seriesApplied Surface Science, ISSN 0169-4332, e-ISSN 1873-5584, (N/A 140 pkt)
Issue year2020
Vol525
Pages1-15
Publication size in sheets0.7
Article number146596
Keywords in EnglishPhotocatalysis, bismuth tungstate, AgInS2 quantum dots, hydrogen evolution, phenol degradation, DFT calculation
ASJC Classification2508 Surfaces, Coatings and Films
DOIDOI:10.1016/j.apsusc.2020.146596
URL https://doi.org/10.1016/j.apsusc.2020.146596
Languageen angielski
Score (nominal)140
Score sourcejournalList
ScoreMinisterial score = 140.0, 14-05-2020, ArticleFromJournal
Publication indicators Scopus SNIP (Source Normalised Impact per Paper): 2018 = 1.326; WoS Impact Factor: 2018 = 5.155 (2) - 2018=4.281 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?