Global-change effects on early-stage decomposition processes in tidal wetlands - implications from a global survey using standardized litter

Peter Mueller , Lisa M. Schile-Beers , Thomas J. Mozdzer , Gail L. Chmura , Thomas Dinter , Yakov Kuzyakov , Alma V. de Groot , Peter Esselink , Christian Smit , Andrea D'Alpaos , Carles Ibáñez , Magdalena Lazarus , Urs Neumeier , Beverly J. Johnson , Andrew H. Baldwin , Stephanie A. Yarwood , Diana I. Montemayor , Zaichao Yang , Jihua Wu , Kai Jensen , Stefanie Nolte

Abstract

Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperature and relative sea level on the decomposition rate and stabilization of OM in tidal wetlands worldwide, utilizing commercially available standardized litter. While effects on decomposition rate per se were minor, we show strong negative effects of temperature and relative sea level on stabilization, as based on the fraction of labile, rapidly hydrolyzable OM that becomes stabilized during deployment. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. Stabilization declined by  ∼  75 % over the studied temperature gradient from 10.9 to 28.5 °C. Additionally, data from the Plum Island long-term ecological research site in Massachusetts, USA, show a pronounced reduction in OM stabilization by  >  70 % in response to simulated coastal eutrophication, confirming the potentially high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil OM.
Author Peter Mueller
Peter Mueller,,
-
, Lisa M. Schile-Beers
Lisa M. Schile-Beers,,
-
, Thomas J. Mozdzer
Thomas J. Mozdzer,,
-
, Gail L. Chmura
Gail L. Chmura,,
-
, Thomas Dinter
Thomas Dinter,,
-
, Yakov Kuzyakov
Yakov Kuzyakov,,
-
, Alma V. de Groot
Alma V. de Groot,,
-
, Peter Esselink
Peter Esselink,,
-
, Christian Smit
Christian Smit,,
-
, Andrea D'Alpaos
Andrea D'Alpaos,,
-
et al.`
Journal seriesBiogeosciences, ISSN 1726-4170
Issue year2018
Vol15
No10
Pages3189-3202
Publication size in sheets0.65
Keywords in Englishglobal warming, decomposition rate, carbon sequestration, global carbon cycle, salt marshes, mangrove
DOIDOI:10.5194/bg-15-3189-2018
URL https://doi.org/10.5194/bg-15-3189-2018
Languageen angielski
LicenseJournal (articles only); published final; Uznanie Autorstwa (CC-BY); with publication
Score (nominal)40
ScoreMinisterial score = 40.0, 06-06-2018, ArticleFromJournal
Ministerial score (2013-2016) = 40.0, 06-06-2018, ArticleFromJournal
Publication indicators WoS Impact Factor: 2016 = 3.851 (2) - 2016=4.618 (5)
Citation count*0
Cite
Share Share

Get link to the record
msginfo.png


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back