Homotopy type of circle graph complexes motivated by extreme Khovanov homology

Józef Henryk Przytycki , Marithania Silvero


It was proven by González-Meneses, Manchón and Silvero that the extreme Khovanov homology of a link diagram is isomorphic to the reduced (co)homology of the independence simplicial complex obtained from a bipartite circle graph constructedfrom the diagram. In this paper, we conjecture that this simplicial complex is always homotopy equivalent to a wedge of spheres. In particular, its homotopy type, if not contractible, would be a link invariant (up to suspension), and it would imply that the extreme Khovanov homology of any link diagram does not contain torsion. We prove the conjecture in many special cases and find it convincing to generalizeit to every circle graph (intersection graph of chords in a circle). In particular, we prove it for the families of cactus, outerplanar, permutation and non-nested graphs.Conversely, we also give a method for constructing a permutation graph whose independence simplicial complex is homotopy equivalent to any given finite wedge ofspheres. We also present some combinatorial results on the homotopy type of finite simplicial complexes and a theorem shedding light on previous results by Csorba, Nagel and Reiner, Jonsson and Barmak. We study the implications of our results toknot theory; more precisely, we compute the real-extreme Khovanov homology of torus links T (3, q) and obtain examples of H-thick knots whose extreme Khovanov homology groups are separated either by one or two gaps as long as desired.
Author Józef Henryk Przytycki (FMPI / IM)
Józef Henryk Przytycki,,
- Institute of Mathematics
, Marithania Silvero
Marithania Silvero,,
Journal seriesJournal of Algebraic Combinatorics, ISSN 0925-9899, (A 30 pkt)
Issue year2018
Publication size in sheets1.85
Keywords in Englishcircle graphs, independence simplicial complex, Khovanov homology, torus links, wedge of spheres
ASJC Classification2607 Discrete Mathematics and Combinatorics; 2602 Algebra and Number Theory
URL https://link.springer.com/content/pdf/10.1007%2Fs10801-017-0794-y.pdf
Languageen angielski
Score (nominal)30
ScoreMinisterial score = 30.0, 24-07-2019, ArticleFromJournal
Publication indicators Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.036; WoS Impact Factor: 2017 = 0.73 (2) - 2017=0.806 (5)
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.