Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe

Angelica Feurdean , Boris Vannière , Walter Finsinger , Dan Warren , Simon C. Connor , Matthew Forrest , Johan Liakka , Andrei Panait , Christian Werner , Maja Andrič , Premysl Bobek , Vachel A. Carter , Basil Davis , Andrei-Cosmin Diaconu , Elisabeth Dietze , Ingo Feeser , Gabriela Florescu , Mariusz Gałka , Thomas Giesecke , Susanne Jahns , Eva Jamrichová , Katarzyna Kajukało , Jed Kaplan , Monika Karpińska-Kołaczek , Piotr Kołaczek , Petr Kuneš , Dimitry Kupriyanov , Mariusz Lamentowicz , Carsten Lemmen , Enikö K. Magyari , Katarzyna Marcisz , Elena Marinova , Aidin Niamir , Elena Novenko , Milena Obremska , Anna Pędziszewska , Mirjam Pfeiffer , Anneli Poska , Manfred Rösch , Michał Słowiński , Migle Stancikaite , Marta Szal , Joanna Święta-Musznicka , Ioan Tanţău , Martin Theuerkauf , Spassimir Tonkov , Orsolya Valkó , Juri Vassiljev , Siim Veski , Ildiko Vincze , Agnieszka Wacnik , Julian Wiethold , Thomas Hickler

Abstract

Wildfire occurrence is influenced by climate, vegetation and human activities. A key challenge for understanding the risk of fires is quantifying the mediating effect of vegetation on fire regimes. Here, we explore the relative importance of Holocene land cover, land use, dominant functional forest type, and climate dynamics on biomass burning in temperate and boreo-nemoral regions of central and eastern Europe over the past 12 kyr. We used an extensive data set of Holocene pollen and sedimentary charcoal records, in combination with climate simulations and statistical modelling. Biomass burning was highest during the early Holocene and lowest during the mid-Holocene in all three ecoregions (Atlantic, continental and boreo-nemoral) but was more spatially variable over the past 3–4 kyr. Although climate explained a significant variance in biomass burning during the early Holocene, tree cover was consistently the highest predictor of past biomass burning over the past 8 kyr. In temperate forests, biomass burning was high at ∼45 % tree cover and decreased to a minimum at between 60 % and 70 % tree cover. In needleleaf-dominated forests, biomass burning was highest at ∼ 60 %–65 % tree cover and steeply declined at >65 % tree cover. Biomass burning also increased when arable lands and grasslands reached ∼ 15 %–20 %, although this relationship was variable depending on land use practice via ignition sources, fuel type and quantities. Higher tree cover reduced the amount of solar radiation reaching the forest floor and could provide moister, more wind-protected microclimates underneath canopies, thereby decreasing fuel flammability. Tree cover at which biomass burning increased appears to be driven by warmer and drier summer conditions during the early Holocene and by increasing human influence on land cover during the late Holocene. We suggest that long-term fire hazard may be effectively reduced through land cover management, given that land cover has controlled fire regimes under the dynamic climates of the Holocene.
Author Angelica Feurdean
Angelica Feurdean,,
-
, Boris Vannière
Boris Vannière,,
-
, Walter Finsinger
Walter Finsinger,,
-
, Dan Warren
Dan Warren,,
-
, Simon C. Connor
Simon C. Connor,,
-
, Matthew Forrest
Matthew Forrest,,
-
, Johan Liakka
Johan Liakka,,
-
, Andrei Panait
Andrei Panait,,
-
, Christian Werner
Christian Werner,,
-
, Maja Andrič
Maja Andrič,,
-
et al.`
Journal seriesBiogeosciences, [BIOGEOSCIENCES], ISSN 1726-4170, e-ISSN 1726-4189, (N/A 140 pkt)
Issue year2020
Vol17
No5
Pages1213-1230
Publication size in sheets0.85
ASJC Classification1105 Ecology, Evolution, Behavior and Systematics; 1904 Earth-Surface Processes
DOIDOI:10.5194/bg-17-1213-2020
Languageen angielski
LicenseRepository; published final; Uznanie Autorstwa (CC-BY); with publication
File
Feurdean_Angelica_Fire_hazard_modulation_2020.pdf Feurdean_Angelica_Fire_hazard_modulation_2020.pdf 3,31 MB
Score (nominal)140
Score sourcejournalList
ScoreMinisterial score = 140.0, 09-03-2020, ArticleFromJournal
Publication indicators Scopus SNIP (Source Normalised Impact per Paper): 2018 = 1.322; WoS Impact Factor: 2018 = 3.951 (2) - 2018=4.699 (5)
Citation count*2 (2020-06-28)
Additional fields
LicencjaUtwór jest udostępniany na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/d
Cite
busy
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?