Predicting physical properties of nanofluids by computational modeling

Natalia Sizochenko , Michael Syzochenko , Agnieszka Gajewicz , Jerzy Leszczynski , Tomasz Puzyn


The focal point of the current contribution was to develop global quantitative structure − property relationship (QSPR) models for nano fl uids. Two target properties, thermal conductivity and viscosity of nano fl uids, were thoroughly investigated. Under this investigation, a new database of thermal conductivity and viscosity of nano fl uids (more than 150 data points) was created. A hierarchical system of molecular representation re fl ecting features of nanoparticle ’ s structure at the di ff erent levels of organization was introduced. Also, size-dependent, volume-dependent, and intensive parameters were calculated. The model for thermal conductivity is characterized by determination coe ffi cient R 2 = 0.81 and root-mean-squared error RMSE = 0.055; the model for viscosity is characterized by R 2 = 0.79 and RMSE = 0.234. Developed models are in agreement with modern theories of nano fl uids behavior. Size- and concentration-related behavior of target properties were discussed. Findings suggest that the increase in surface area ratio and interfacial layer thickness and decrease in nanoparticles size lead to thermal conductivity and viscosity increase. Thermal conductivity and viscosity increase with an increase in weighted fraction-dependent parameters. Up-to-date, reliable theoretical models were created only for a single type of nanoparticles. In this article, developed models can simultaneously predict the thermal conductivity and viscosity in an e ff ective way using both size and volume concentration of nano fl uid.
Author Natalia Sizochenko (FCh / DEChR / LECh)
Natalia Sizochenko,,
- Laboratory of Environmental Chemometrics
, Michael Syzochenko
Michael Syzochenko,,
, Agnieszka Gajewicz (FCh / DEChR / LECh)
Agnieszka Gajewicz,,
- Laboratory of Environmental Chemometrics
, Jerzy Leszczynski
Jerzy Leszczynski,,
, Tomasz Puzyn (FCh / DEChR / LECh)
Tomasz Puzyn,,
- Laboratory of Environmental Chemometrics
Journal seriesThe Journal of Physical Chemistry Part C: Nanomaterials, Interfaces and Hard Matter, ISSN 1932-7447, (A 35 pkt)
Issue year2017
Publication size in sheets0.5
ASJC Classification1606 Physical and Theoretical Chemistry; 2100 General Energy; 2504 Electronic, Optical and Magnetic Materials; 2508 Surfaces, Coatings and Films
Languageen angielski
Not used for evaluationyes
Score (nominal)0
Publication indicators WoS Citations = 4; Scopus SNIP (Source Normalised Impact per Paper): 2017 = 1.135; WoS Impact Factor: 2017 = 4.484 (2) - 2017=4.691 (5)
Citation count*11 (2020-05-28)
Additional fields
UwagiArtykuł został zgłoszony do parametryzacji za lata 2013-2016
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?