Perovskite-type KTaO3 : reduced graphene oxide hybrid with improved visible light photocatalytic activity

Beata Bajorowicz , Joanna Reszczyńska , W. Lisowski , T. Klimczuk , M. Winiarski , M. Słoma , Adriana Zaleska-Medynska


Novel rGO–KTaO3 composites with various graphene content were successfully synthesized using a facile solvothermal method which allowed both the reduction of graphene oxide and loading of KTaO3 nanocubes on the graphene sheets. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) specific surface area, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) emission spectroscopy. The obtained rGO–KTaO3 composites showed greatly improved photocatalytic performance for degradation of phenol under visible light irradiation (λ > 420 nm) over pristine KTaO3 which could be related to the photosensitizer role of graphene in the rGO–KTaO3 composites as well as the formation of p–n heterojunctions between KTaO3 nanocubes and rGO sheets. The highest photocatalytic activity in phenol degradation reaction was observed for rGO–KTaO3 hybrid with 30 wt% graphene. The enhanced photoactivity of this composite could be attributed to the synergistic effect of several factors such as: small crystallite size, extended absorption range in the visible spectrum and intimate contact between graphene and KTaO3 cubes.
Author Beata Bajorowicz PFotokatalizy
Beata Bajorowicz,,
- Laboratory of Photocatalysis
, Joanna Reszczyńska PFotokatalizy
Joanna Reszczyńska,,
- Laboratory of Photocatalysis
, W. Lisowski
W. Lisowski,,
, T. Klimczuk
T. Klimczuk,,
, M. Winiarski
M. Winiarski,,
, M. Słoma
M. Słoma,,
, Adriana Zaleska-Medynska PFotokatalizy
Adriana Zaleska-Medynska,,
- Laboratory of Photocatalysis
Journal seriesRSC Advances, ISSN 2046-2069
Issue year2015
Publication size in sheets0.5
Keywords in Englishphotocatalyst, perovskite-type KTaO3, graphene
Languageen angielski
LicenseJournal (articles only); published final; Uznanie Autorstwa - Użycie Niekomercyjne (CC-BY-NC); with publication
Score (nominal)35
ScoreMinisterial score = 35.0, 20-12-2017, ArticleFromJournal
Ministerial score (2013-2016) = 35.0, 20-12-2017, ArticleFromJournal
Publication indicators WoS Impact Factor: 2015 = 3.289 (2) - 2015=3.485 (5)
Citation count*0
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.