Survey on the Bell nonlocality of a pair of entangled qudits

Alejandro Fonseca , Anna de Rosier , Tamás Vértesi , Wiesław Laskowski , Fernando Parisio


The question of how Bell nonlocality behaves in bipartite systems of higher dimensions is addressed. By employing the probability of violation of local realism under random measurements as the figure of merit, we investigate the nonlocality of entangled qudits with dimensions ranging from d=2 up to d=10. We proceed in two complementary directions. First, we study the specific Bell scenario defined by the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality. Second, we consider the nonlocality of the same states under a more general perspective by directly addressing the space of joint probabilities (computing the frequencies of behaviours outside the local polytope). In both approaches we find that the nonlocality decreases as the dimension d grows, but in quite distinct ways. While the drop in the probability of violation is exponential in the CGLMP scenario, it presents, at most, a linear decay in the space of behaviors. Furthermore, in the latter approach the states that produce maximal numeric violations in the CGLMP inequality present low probabilities of violation in comparison to maximally entangled states, so no anomaly is observed. Finally, the nonlocality of states with nonmaximal Schmidt rank is investigated.
Author Alejandro Fonseca
Alejandro Fonseca,,
, Anna de Rosier (FMPI)
Anna de Rosier ,,
- Faculty of Mathematics, Physics and Informatics
, Tamás Vértesi
Tamás Vértesi,,
, Wiesław Laskowski (FMPI / ITPA)
Wiesław Laskowski,,
- Institute of Theoretical Physics and Astrophysics
, Fernando Parisio
Fernando Parisio,,
Journal seriesPhysical Review A, ISSN 1050-2947, (A 35 pkt)
Issue year2018
Publication size in sheets0.5
ASJC Classification3107 Atomic and Molecular Physics, and Optics
Languageen angielski
Score (nominal)35
Score sourcejournalList
ScoreMinisterial score = 35.0, 28-01-2020, ArticleFromJournal
Publication indicators WoS Citations = 2; Scopus SNIP (Source Normalised Impact per Paper): 2017 = 0.886; WoS Impact Factor: 2018 = 2.907 (2) - 2018=2.723 (5)
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?